ISSN 1070-4280, Russian Journal of Organic Chemistry, 2008, Vol. 44, No. 11, pp. 1652–1656. © Pleiades Publishing, Ltd., 2008. Original Russian Text © Ya.V. Zonov, T.V. Mezhenkova, V.M. Karpov, V.E. Platonov, 2008, published in Zhurnal Organicheskoi Khimii, 2008, Vol. 44, No. 11, pp. 1675–1679.

Reaction of Perfluoro-1-methylindan with SiO₂-SbF₅

Ya. V. Zonov, T. V. Mezhenkova, V. M. Karpov, and V. E. Platonov

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, Novosibirsk, 630090 Russia e-mail: karpov@nioch.nsc.ru

Received January 17, 2008

Abstract—The reaction of perfluoro-1-methylindan with SiO₂–SbF₅ depending on the amount of SiO₂ led to the formation after hydrolysis of the reaction mixture of perfluoro-3-methylindan-1-one, perfluoro-4-methylisochromen-1-one, 6-(1-carboxy-2,2,2-trifluoro-ethyl)-2,3,4,5-tetrafluoro-benzoic and 6-(carboxymethyl)-2,3,4,5-tetrafluoro-benzoic acids. Heating in the SbF₅ medium perfluoro-1-methylindan in a glass ampoule at 130°C, or perfluoro-3-methylindan-1-one at 70°C provided a solution of a perfluoro-4-methylisochromenium salt that on treating with anhydrous HF was converted into perfluoro-4-methyl-1*H*-isochromen, and on hydrolysis, into perfluoro-4-methylisochromen-1-one.

DOI: 10.1134/S107042800811016X

We formerly found and investigated the cationoid rearrangements of benzocycloalkenes (benzocyclobutene, indan, tetralin) and of their perfluoroalkyl and perfluoroaryl derivatives under the action of Lewis acids [1, 2]. In particular, on heating perfluoro-1-methylindan (I) with SbF₅ in a small nickel bomb formed perfluoro-2-isopropyl-toluene [2], and in a glass ampoule, perfluoro-4-methyl-1*H*-isochromen (II), a product of reaction of compound I with antimony pentafluoride and glass serving as a source of inorganic oxides (see preliminary communication [3]). We recently showed that in the reaction of perfluoro-indan-1-one and perfluoro-3-ethylindan-1-one respectively that suffered skeletal transformations under the action of antimony pentafluoride [4, 5].

We report here on the study of the reaction of perfluoromethylindan (I) with SiO₂ in SbF₅ environment, and also of the behavior of perfluoro-3-methylindan-1-one (III) under the treatment with SbF₅ in order to establish the possibility of its cationoid skeletal rearrangements. Besides in more detail than in the preliminary communication [3] the reaction of compound I with glass in the presence of SbF₅ was described.

It was shown that at heating with SbF_5 in a sealed glass ampoule compound I reacted with the glass giving a salt of perfluoro-4-methylisochromenium (IV). The hydrolysis of the reaction mixture resulted in perfluoro-4-methylisochromen-1-one (V). The treatment of the reaction mixture with anhydrous HF and then with water gave compound II. The heating of ketone III with SbF_5

at 70°C also led to the formation of the solution of salt of cation **IV** whose hydrolysis provided compound **V**. Besides the reaction mixture contained unreacted ketone **III** (Scheme 1).

In the reaction of compound I with SiO₂ (0.6 mol per 1 mol of compound I) in SbF₅ at 70°C after treating the reaction mixture with water we obtained ketone III alongside compound V and a few 6-(1-carboxy-2,2,2-trifluoroethyl)-2,3,4,5-tetrafluorobenzoic acid (VI). The mixture also contained the unreacted compound I (Scheme 2).

The reaction of compound I with excess SiO_2 in SbF_5 at 70°C followed by treating the reaction mixture with water yielded 6-(carboxymethyl)-2,3,4,5-tetrafluorobenzoic acid (VII) alongside small quantities of compounds III, V, and VI (Scheme 2).

The reaction of compound I with glass and SiO₂ in the presence of SbF₅ apparently proceeds along Scheme 3. First from compound I under the action of SbF₅ cation A is generated that reacts, for example, with SiO₂ giving ketone III. Then cation B forms from ketone III and suffers the opening of the five-membered ring providing a benzoyl type cation C. After the addition to the latter of a fluoride ion the corresponding acid fluoride is obtained that under the action of SbF₅ presumably yields an allyl type cation D. The latter undergoes an intramolecular cyclization resulting in ion E whose isomerization into cation IV gives at subsequent hydrolysis compound V.

In the presence of excess SiO_2 cation **D** apparently reacts with SiO_2 -SbF₅ generating ion **F**. It cannot be excluded that the latter by the addition–elimination of a fluoride ion isomerizes into cation **G** whose intramolecular cyclization followed by the addition of a fluoride ion also gives compound **V**. It is also presumable that the ring closure in cation **F** and the shift of the multiple bond into the ring results in cation **H**. After the treatment of the reaction mixture with water the salt of cation **H** is hydrolyzed forming apparently compound **I** and then acid **J** that on decarboxylation gives acid **VII** (Scheme 3).

The alternative route to acid **VII** involving the reaction of the salt of cation **IV** with SiO_2 to give cation **H** seems hardly probable for it has been shown by a special experiment the in the reaction of the salt of cation **IV** with SiO_2 at 70°C acid **VII** forms in a low yield.

Scheme 3 describing the transformation of ketone III under the action of SbF_5 into cation IV, and also the formation of compound I in the reaction of cation D with SiO_2 is consistent with the scheme that was suggested for the explanation of transformations of perfluoro-3-ethylindan-1-one under the action of SbF_5 and SiO_2 - SbF_5 respectively [5]. Therewith perfluoro-3-methyl-4-fluorocarbonylisochromen-1-one (analog of compound I) and perfluoro-2-(but-2-en-2-yl)benzoic acid (hydrolysis product of analog of cation C) were obtained in [5].

By reaction with water in acid medium compound V was converted in acid VI. The probable reaction path under these conditions is shown on Scheme 4 (a).

In contrast the reaction with water of compound V under alkaline conditions resulted in the formation of acid VII alongside a small quantity of acid VI. It was shown by an independent experiment that under these conditions acid VII formed from acid VI in a considerably lesser quantity than from compound V. It is therefore presumable that in alkaline medium acid VII formed from compound V mainly along pathway *b*.

The composition and structure of compounds were confirmed by elemental analysis and spectral characteristics. The structure of cation **IV** was established from the ¹⁹F NMR spectrum and was confirmed by the structure of its reaction products with anhydrous HF and

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 11 2008

water. In the ¹⁹F NMR spectrum of cation **IV** the signals of the fluorine atoms were shifted downfield compared to neutral compound **II**, and also the coupling constants of the fluorine atoms attached to the charged carbon were increased; the latter fact was characteristic of the fluorine-containing cations [5, 6].

EXPERIMENTAL

IR spectra were recorded on a spectrophotometer Bruker Vector 22. ¹H and ¹⁹F NMR spectra were registered on a spectrometer Bruker AC-200 (at 200 and 188.3 MHz respectively). As internal references were

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 11 2008

used HMDS (0.04 ppm from TMS), $(CD_3)_2CO$ (residual proton 2.04 ppm from TMS), C_6F_6 and SO_2ClF (262.8 ppm from C_6F_6). Elemental composition was determined by high resolution mass spectrometry on a Finnigan MAT 8200 instrument. GLC analyses were performed on a chromatograph LKhM-72 (50–270°C, column 4000×4 mm, stationary phase SKTFT-50 on Chromosorb W, 15:100, He, 60 ml/min).

Reaction of perfluoro-1-methylindan (I) with glass in SbF₅. a. A mixture of 2.15 g (6.2 mmol) of compound I and 4.02 g (18.5 mmol) of SbF₅ was heated at 130°C in a sealed glass ampoule for 49 h. To the reaction mixture at -20°C was added ~4 ml of SO₂ClF, the mixture was stirred and charged into a fluoroplastic vessel containing ~12 ml of anhydrous HF cooled to -20°C. The mixture was kept for 40 min and afterwards it was poured into water with ice. The organic layer was separated, washed with NaHCO₃ solution, with water, and dried over MgSO₄. We obtained 0.95 g of product containing according to GLC 80% of perfluoro-4methyl-1H-isochromen (II) (yield 38%), that was purified by preparative GLC (SKTFT-50 on celite, 125°C). Liquid. IR spectrum (CCl₄), v, cm⁻¹: 1694 (C=C), 1525, 1497 (fluorinated aromatic ring). ¹⁹F NMR spectrum (CDCl₃), δ, ppm: 10.0 (1F, F⁷), 15.8 (1F, F⁶), 23.8 (1F, F⁸), 26.3 (1F, F⁵), 86.1 (1F, F³), 105.0 (3F, CF₃⁴), 110.8 $(2F, CF_2^{1}); J_{1,5} 2, J_{1,6} 2, J_{1,8} 23, J_{3,4} 33, J_{3,5} 4, J_{3,6} 2,$ $J_{3,7}5, J_{3,8}2, J_{4,5}39, J_{5,6}19, J_{5,7}5, J_{5,8}12, J_{6,7}20, J_{6,8}8,$ J_{7,8} 21 Hz. Found [M]⁺ 325.9778. C₁₀F₁₀O. Calculated M 325.9789.

b. A solution of 0.27 g (0.78 mmol) of compound I in 0.67 g (3.1 mmol) of SbF₅ was heated at 130°C in an NMR tube for 44 h. According to ¹⁹F NMR spectrum a mixture was obtained containing perfluoro-4-methylisochromenium (IV) salt. The content of the tube was treated with water, extracted with CH₂Cl₂, dried with MgSO₄, and the solvent was distilled off in a vacuum. We obtained 0.15 g (64%) of perfluoro-4-methylisochromen-1-one (V), mp 75–76.5°C (from heptane). IR spectrum (CCl₄), v, cm⁻¹: 1803 (C=O), 1680 (C=C), 1515, 1490 (fluorinated aromatic ring). ¹⁹F NMR spectrum (CH₂Cl₂), δ, ppm: 10.1 (1F, F⁷), 23.1 (1F, F⁶), 27.8 (1F, F⁵), 32.2 (1F, F⁸), 94.2 (1F, F³), 106.7 (3F, CF₃⁴); J_{3,4} 39, $J_{3,5}$ 4, $J_{3,6}$ 2, $J_{3,7}$ 5, $J_{3,8}$ 3, $J_{4,5}$ 44, $J_{5,6}$ 19, $J_{5,7}$ 5, $J_{5,8}$ 13, $J_{6,7}$ 21, $J_{6,8}$ 13, $J_{7,8}$ 21 Hz. Found $[M]^+$ 303.9769. C₁₀F₈O₂. Calculated *M* 303.9770.

Formation of perfluoro-4-methylisochromenium (IV) salt from perfluoro-3-methylindan-1-one (III). A solution of 0.12 g (0.37 mmol) of compound **III** (prepared in [7]) in 0.96 g (4.43 mmol) of SbF₅ was heated at 70–75°C in an NMR tube for 13 h, then 0.27 g of SO₂ClF was added, and the ¹⁹F NMR spectrum was registered. According to the spectrum the solution contained the salt of cation **IV** and a small quantity of ketone **III**. Then the content of the tube was worked up as described in the previous experiment. We obtained 0.07 g of a mixture containing according to the ¹⁹F NMR spectrum 85% (yield 54%) of compound **V** and 15% of ketone **III**.

¹⁹F NMR spectrum of perfluoro-4-methylisochromenium salt (SbF₅–SO₂ClF), δ, ppm: 26.8 (1F, F⁷), 39.3 (1F, F⁵), 52.2 (1F, F⁸), 64.2 (1F, F⁶), 99.6 (1F, F³), 108.0 (3F, CF₃⁴), 149.0 (1F, F¹); $J_{1,3}$ 10, $J_{1,5}$ 4, $J_{1,6}$ 10, $J_{1,8}$ 88, $J_{3,4}$ 37, $J_{3,5}$ 6, $J_{3,6}$ 4, $J_{3,7}$ 6, $J_{4,5}$ 44, $J_{5,6}$ 17, $J_{5,7}$ 11, $J_{5,8}$ 12, $J_{6,7}$ 20, $J_{6,8}$ 31, $J_{7,8}$ 18 Hz.

Reaction of perfluoro-1-methylindan (I) with SiO_2-SbF_5 . *a*. A mixture of 0.37 g (1.06 mmol) of compound I, 0.04 g (0.67 mmol)of SiO_2 (silica gel calcined at 400–450°C) and 0.70 g (3.23 mmol) of SbF_5 was stirred at 70°C for 3 h, and treated with 5% aqueous HCl. The product was extracted into CH_2Cl_2 , the extract was dried over MgSO₄, and the solvent was distilled off in a vacuum to obtain 0.33 g of a mixture containing according to the ¹⁹F NMR spectrum 61% (yield 59%) of ketone III, 19% (yield 18%) of compound V, 10% (yield 10%) of 6-(1-carboxy-2,2,2-trifluoroethyl)-2,3,4,5-tetrafluorobenzoic acod (VI), and 10% (yield 9%) of unreacted compound I.

b. A mixture of 0.43 g (1.24 mmol) of compound I, 0.11 g (1.83 mmol) of SiO₂, and 1.34 g (6.18 mmol) of SbF₅ was stirred at 70–75°C for 9.5 h, and treated with 5% aqueous HCl. The reaction mixture was first extracted with CHCl₃, then with ether, and the extracts were dried with MgSO₄. On removing the solvent in a vacuum we obtained from the chloroform extract 0.09 g of a mixture containing according to the ¹⁹F NMR spectrum 76% (yield 18%) of compound V and 24% (yield 6%) of ketone III. From the ether extract on removing the solvent and after sublimation (170–180°C, 2 mm Hg) 0.18 g of mixture was obtained containing according to the ¹⁹F NMR spectrum 5% (vield 3%) of acid VI and 95% (yield 54%) of 6-(carboxymethyl)-2,3,4,5tetrafluorobenzoic acid (VII). By recrystallization of the mixture from benzene-ether 0.12 g of compound VII was isolated, mp 194–196°C. IR spectrum (KBr), v, cm⁻¹: 1724, 1691 (C=O), 1524, 1483 (fluorinated aromatic ring). ¹H NMR spectrum [(CD₃)₂CO], δ , ppm: 3.96 d [2H, CH₂, J(CH₂, F⁵) 2 Hz], 9.61 br.s (2H, OH). ¹⁹F NMR

RUSSIAN JOURNAL OF ORGANIC CHEMISTRY Vol. 44 No. 11 2008

spectrum [(CD₃)₂CO], δ , ppm: 6.0 (1F, F³), 9.8 (1F, F⁴), 22.5 (1F, F⁵), 24.8 (1F, F²); $J_{2,3}$ 21, $J_{2,4}$ 6, $J_{2,5}$ 12, $J_{3,4}$ 20, $J_{3,5}$ 3, $J_{4,5}$ 21 Hz, J(F⁵, CH₂) 2 Hz. Found [M]+ 252.0047. C₉H₄F₄O₄. Calculated M 252.0046.

Behavior of cation IV salt in a system SiO₂-SbF₅. A mixture of 0.38 g (1.17 mmol) of compound III and 1.43 g (6.60 mmol) of SbF₅ was heated at 80°C for 7 h, then 0.04 g (0.67 mmol) of SiO_2 was added, and the mixture was stirred at 70-75°C for 7 h. The mixture obtained was treated with 5% aqueous HCl, extracted first with CHCl₃, then with ether, and the extracts were dried with MgSO₄. On removing the solvent in a vacuum and sublimation (100°C, 10 mm Hg) we obtained from the chloroform extract 0.18 g (51%) of compound V. From the ether extract on removing the solvent and after sublimation (170–180°C, 2 mm Hg) 0.06 g of mixture was obtained containing according to the ¹⁹F NMR spectrum 11% (yield 2%) of acid VI, 75% (yield 15%) of acid VII, and 14% (yield 3%) of tetrafluorophthalic acid.

Hydrolysis of perfluoro-4-methylisochromen-1one (V). a. To a solution of 0.18 g (0.59 mmol) of compound V in 2 ml of ether was added 1.5 ml 10% aqueous HCl, and the mixture was stirred at 18°C for 4 days. The ether layer was separated, dried with MgSO₄, and the solvent was distilled off in a vacuum to give 0.18 g (95%) of acid VI. Analytical sample of compound VI was obtained by recrystallization first from a mixture benzene-ether, then from water, mp 170-174°C (decomp.). IR spectrum (KBr), v, cm⁻¹: 1741, 1718, 1695 (C=O), 1530, 1486 (fluorinated aromatic ring). ¹H NMR spectrum [(CD₃)₂CO], δ , ppm: 5.61 q [1H, CH, J(CH,CF₃) 9 Hz], 9.31 br.s (2H, OH). ¹⁹F NMR spectrum [(CD₃)₂CO], δ, ppm: 10.7 (1F, F³), 11.6 (1F, F⁴), 26.9 (1F, F²), 28.3 (1F, F⁵), 98.5 (3F, CF₃); *J*_{2.3} 21, *J*_{2.4} 6, J_{2,5} 11, J_{3,4} 20, J_{3,5} 6, J_{4,5} 20 Hz, J(F⁵, CF₃) 14, J(CF₃, CH) 9 Hz. Found [M]+ 319.9925. C₁₀H₃F₇O₄. Calculated M 319.9920.

b. To a mixture of 0.06 g (0.20 mmol) of compound V, 0.15 g (1.06 mmol) of K_2CO_3 , and 2.5 ml of water 5 drops of ether were added, and the mixture was stirred at 20°C for 18 h. The solution obtained was acidified with HCl, extracted with ether, the extract was dried over MgSO₄. On removing the solvent in a vacuum 0.05 g of mixture was obtained containing according to the ¹⁹F NMR spectrum 27% (yield 25%) of acid **VI** and 73% (yield 68%) of acid **VII**.

c. In the same way as in the previous run (b) from 0.06 g (0.19 mmol) of compound VI, 0.15 g (1.06 mmol) of K_2CO_3 , and 2 ml of water at 20°C in 19 h we obtained 0.05 g of mixture containing according to the ¹⁹F NMR spectrum 81% of acid VI and 19% (yield 16%) of acid VII.

The study was carried out under a financial support of the Russian Foundation for basic Research (grant no. 06-03-32170).

REFERENCES

- Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., and Yakobson, G.G., J. Fluor. Chem., 1985, vol. 28, p. 115; Karpov, V.M., Mezhenkova, T.V., and Platonov, V.E., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, p. 645; Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., and Yakobson, G.G., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, p. 1114; Karpov, V.M., Mezhenkova, T.V., and Platonov, V.E., Izv. Akad. Nauk SSSR, Ser. Khim., 1990, p. 1114; Karpov, V.M., Mezhenkova, T.V., and Platonov, V.E., Izv. Akad. Nauk SSSR, Ser. Khim., 1992, p. 1419; Karpov, V.M., Mezhenkova, T.V., and Platonov, V.E., Zh. Org. Khim., 1997, vol. 33, p. 755; Kar-pov, V.M., Mezhenkova, T.V., Platonov, V.E., and Sinyakov, V.R., J. Fluor. Chem., 2001, vol. 107, p. 53; Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., and Sinyakov, V.R., J. Fluor. Chem., 2002, vol. 117, p. 73; Sinyakov, V.R., Mezhenkova, T.V., Karpov, V.M., and Platonov, V.E., J. Fluor. Chem., 2004, vol. 125, p. 49.
- Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., and Yakobson, G.G., *Bull. Soc. Shim.*, 1986, p. 980.
- Karpov, V.M., Mezhenkova, T.V., Platonov, V.E., and Yakobson, G.G., *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1991, p. 745.
- Zonov, Ya.V., Karpov, V.M., and Platonov, V.E., J. Fluor. Chem., 2005, vol. 126, p. 437.
- Zonov, Ya.V., Karpov, V.M., and Platonov, V.E., J. Fluor. Chem., 2007, vol. 128, p. 1065.
- Olah, G.A. and Comisarov, M.B., *J. Am. Chem. Soc.*, 1969, vol. 91, p. 2955; Pozdnyakovich, Yu.V. and Shteingarts, V.D., *J. Fluor. Chem.*, 1974, vol. 4, p. 283; Pozdnyakovich, Yu.V. and Shteingarts, V.D., *J. Fluor. Chem.*, 1974, vol. 4, p. 297; Shteingarts, V.D., *Usp. Khim.*, 1981, vol. 50, p. 1407.
- Zonov, Ya.V., Karpov, V.M., and Platonov, V.E., J. Fluor. Chem., 2007, vol. 128, p. 1058.